Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference.

نویسندگان

  • Javier Gil-Humanes
  • Fernando Pistón
  • Stig Tollefsen
  • Ludvig M Sollid
  • Francisco Barro
چکیده

Celiac disease (CD) is an enteropathy triggered by the ingestion of gluten proteins from wheat and similar proteins from barley and rye. The inflammatory reaction is controlled by T cells that recognize gluten peptides in the context of human leukocyte antigen (HLA) DQ2 or HLA-DQ8 molecules. The only available treatment for the disease is a lifelong gluten-exclusion diet. We have used RNAi to down-regulate the expression of gliadins in bread wheat. A set of hairpin constructs were designed and expressed in the endosperm of bread wheat. The expression of gliadins was strongly down-regulated in the transgenic lines. Total gluten protein was extracted from transgenic lines and tested for ability to stimulate four different T-cell clones derived from the intestinal lesion of CD patients and specific for the DQ2-α-II, DQ2-γ-VII, DQ8-α-I, and DQ8-γ-I epitopes. For five of the transgenic lines, there was a 1.5-2 log reduction in the amount of the DQ2-α-II and DQ2-γ-VII epitopes and at least 1 log reduction in the amount of the DQ8-α-I and DQ8-γ-I epitopes. Furthermore, transgenic lines were also tested with two T-cell lines that are reactive with ω-gliadin epitopes. The total gluten extracts were unable to elicit T-cell responses for three of the transgenic wheat lines, and there were reduced responses for six of the transgenic lines. This work shows that the down-regulation of gliadins by RNAi can be used to obtain wheat lines with very low levels of toxicity for CD patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing highly effective and genetically invert fragments by full assessment of mutations in seed region siRNAs in omega gliadin epitopes

RNAi mechanism plays a major role in silencing the expression of target genes by siRNAs. In the current study, in silico properties of 30 genes in omega-2 gliadin and 266 nt and 326 nt mutations were investigated before and after cloning in an expression vector. Specific primers were designed for 30 genes with spacer regions of 75 nt and 178 nt (for gene invert repeats). The frequency of siRNA ...

متن کامل

The Shutdown of Celiac Disease-Related Gliadin Epitopes in Bread Wheat by RNAi Provides Flours with Increased Stability and Better Tolerance to Over-Mixing

Celiac disease is a food-sensitive enteropathy triggered by the ingestion of wheat gluten proteins and related proteins from barley, rye, and some varieties of oat. There are no interventional therapies and the only solution is a lifelong gluten-free diet. The down-regulation of gliadins by RNAi provides wheat lines with all the gliadin fractions strongly down-regulated (low-gliadin). The techn...

متن کامل

Production of a panel of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease.

BACKGROUND/AIMS Coeliac disease is a chronic intestinal disorder most probably caused by an abnormal immune reaction to wheat gliadin. The identification of the HLA-DQ2 and HLA-DQ8 as the molecules responsible for the HLA association in coeliac disease strongly implicates a role for CD4 T cells in disease pathogenesis. Indeed, CD4 T cells specific for gliadin have been isolated from the small i...

متن کامل

Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease.

BACKGROUND AND AIMS Celiac disease is a prevalent disorder characterized by a chronic intestinal inflammation driven by HLA-DQ2 or -DQ8-restricted T cells specific for ingested wheat gluten peptides. The dominant T-cell responses are to epitopes that cluster within a stable 33mer fragment formed by physiologic digestion of distinct alpha-gliadins. Celiac disease is treated by excluding all glut...

متن کامل

Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes

Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 39  شماره 

صفحات  -

تاریخ انتشار 2010